10/18/2009

PHP COOKIES, SESSIONS,

AND SESSION VARIABLES

Fall 2009 CSCI 2910 Server-Side Web Programming

Objectives
1 e ——

» Understand and use Cookies in PHP scripts.

» Understand and use Sessions and Session variables
in PHP scripts.

10/18/2009

HTTP

HTTP is a stateless protocol

Each page "stands alone" and has no memory of past
actions.

Addressed in Netscape 3.0 with cookies.

Cookies allow us to write data to user's computer
and read that data as user traverses site.

Cookies can only be written as part of header
information, therefore cannot create or add to a
cookie after writing to browser.

Using cookies

To create a cookie, use setcookie()

setcookie(cookiename, value, [expire]);
setcookie(''cook',"27");

Expiration—expressed using time. If not set, cookie
is valid for this user session only.
setcookie('other™,"1", time()+60*60*24*30);
http://einstein.etsu.edu/~pittares/CSCI2910/examples/8-1.php
Retrieved similar to S_POST variables:
S_COOKIE['cookiename']
http://einstein.etsu.edu/~pittares/CSCI2910/examples/8-2.php

Deleting and checking cookies
1 e ——

To delete: overwrite cookie with expiration time in
the past.
setcookie(''cook","" ,time()-100);
http://einstein.etsu.edu/~pittares/CSCI2910/examples/8-3.php

Actual cookie deletion done by user's browser.
To see if the user accepts cookies, write one and
then check (on another page or after a refresh) to
see if it exists.

Cookie tutorial:
http://einstein.etsu.edu/~pittares/CSCI2910/examples/8-4.php

Conclusion: Using Cookies
1 e ——

If user accepts cookies, and if you remember to
manage setting them prior to non-header output,
then they're fine.

If you use Sessions:

PHP manages complexity.

If the user doesn't support cookies, PHP has an
automated "workaround".

More complex data storage (arrays, etc.) easier to
implement.

But, you lose multi-visit persistence

10/18/2009

What is session control?
I

Gives ability to track a user through site, and easily
move data related to that user among pages.
No need to move data through hidden form fields.

Very useful for authentication, but can be used any
time persistent data needed throughout a site visit.

How sessions work
I

Sessions are identified by a random number
(Session ID) generated by PHP and stored on the
client computer in 1 of 2 ways:

Using a cookie, if the user's browser supports.

Appending the session number to URLs as user
traverses site
www.whatever.com?PHPSESSID=495294532459x%

Session ID corresponds a session data store on
server

A session will eventually expire--usually after a
specified period of inactivity.

10/18/2009

Progression of events

PHP script starts a session. Done before any other
page activity.
session_start();
Session ID created and stored on user's computer. (if
possible)
Session variables are created, and values stored on
the server.

PHP script can use these variables from page to
page throughout a site.

Using session variables

Some PHP servers automatically start a Session for
every user when they visit the site.

May slow things down due to unnecessary overhead.

Controlled by PHP.ini file on the server.
http://einstein.etsu.edu/~pittares/PHPTest/phpinformation.php

Session operations changed in PHP 4.1, so be
careful with older installations and reference
books.

10/18/2009

Starting a session
1 e ——

In any script using sessions, you must first call
session_start().
If session has not been established, this will do that.
If a session has been established, this will load
session data.

You must start the session at the very beginning of
the script--as part of header transmission.

Add or access session variables by using the
$ SESSION superglobal array.

Session Handling
T S —
<?php

session_start();

$ SESSION["name®"] = "Dr. Tony Pittarese";
$ SESSION["office"] = "Nicks 484";

$ SESSION["phone"] = 96951;
?>

<?php
session_start();

echo ""Here"s the session info:
";
foreach ($_SESSION as $var=>$contents)

echo ""$var: $contents
";
?>

10/18/2009

Manipulating Session ID
1 e ——

session_i1d() allows you to get or set the
Session ID.
If no parameter, returns the Session ID.

If given a parameter, sets that as the Session ID.
http://einstein.etsu.edu/~pittares/CSCI2910/examples/8-7.php
http://einstein.etsu.edu/~pittares/CSCI2910/examples/8-8.php

Manipulating the Session data
1 e ——

session_unset() erases all session variables
and data.
http://einstein.etsu.edu/~pittares/CSCI2910/examples/8-9.php

unset() can be used to erase a single variable and
data.
unset($_SESSION["myvar®]);
session_destroy() destroys the session data
(without destroying the session variables).

Can be useful for "logging out" user.
http://einstein.etsu.edu/~pittares/CSCI2910/examples/8-10.php

http://einstein.etsu.edu/~pittares/CSCI2910/examples/8-11.php

10/18/2009

Session variable arrays
1 e ——

Session variables can be arrays
<?php
session_start();
$ SESSION["list"][]="Hello";
$ SESSION["“list"][]="Wow";
echo count($_SESSION["list™])."
";
foreach ($_SESSION["list"] as $item)
echo "$item
";

?>

Can be useful technique for shopping carts or other
data that is accumulated over multiple page visits.
http://einstein.etsu.edu/~pittares/CSCI2910/examples/8-12.php

When and why to use Sessions
1 e ——

Performance

When performing a slow operation, storing the results
for use on several pages is better than repeating the
calculation on each.

Example: storing results of SQL query
Sequence
When a user process takes place over a sequence of
screens, storing information saves time and user input.
Personalization

Session variables can be used to store user color or
layout preferences or facts about browsing activity.
Pages can then adapt to that activity.

http://einstein.etsu.edu/~pittares/CSCI2910/examples/8-13.php

10/18/2009

Potential problems with Sessions
1 e ——

Multiple Servers
Since session information stored on server, harder to

configure when multiple servers fulfill user
requests.

Handled typically by using a DB to store session data.
Performance

Additional workload for server to store and retrieve
information.

Garbage Collection

Since user may abandon site visit, must determine
session timeout values and employ garbage
collection.

Potential problems with Sessions
1 e ——

Bookmarking

Unlike GET parameters which can be bookmarked,
data moved from page to page is lost when the
user bookmarks a page and returns later.

Security

If a user can counterfeit a SESSION cookie, they could
"hijack" another user's interaction session.

10/18/2009

Session ID Numbers
I

If the user allows Cookies, this will be handled
automatically.

If the user does not allow Cookies, then as you
move from page to page you (the programmer)
must manually keep up with the Session ID.

Append the SID to the URL.
<a href=""session2.php?PHPSESSID=<?=SI1D?>"">test

Or turn on transparent SID support in the PHP
configuration

If Transparent SID is on
|

If the user accepts cookies:

Address @hI:I:p:,I',l'I-:u:thDst,I'ESSEuEitest,l'sessinnz.php v GD Links *

Now I'm on page two.

I@ Done ‘ﬂ Local inkranet

If the user does not accept cookies:

— = e W | wa - e — = ==

Address @ http: {192,168, 1.1 cs368kest sessionZ, php?PHPSESSID=ac?d1 9ch8dS1bfd1 d36aaaZcc2c9FaFS V| Go Links

Now I'm on page two.

[ERmE2

@ Done c% 4 Internet

10/18/2009

10

